To calculate the specific thrust and specific fuel consumption (SFC) of a turbojet engine, we'll use the given component performance data and apply the relevant formulas.
Given:
Cruise speed (Mach number) = 0.8
Altitude = 10000 m
Compressor pressure ratio (rp) = 8.0
Turbine inlet temperature (Tt4) = 1200 K
Compressor isentropic efficiency (ηc) = 0.87
Turbine isentropic efficiency (ηt) = 0.90
Intake efficiency (ηi) = 0.93
Propelling nozzle efficiency (ηj) = 0.95
Mechanical transmission efficiency (ηm) = 0.99
Combustion efficiency (ηb) = 0.98
Combustion chamber pressure loss (∆Pb) = 4% of compressor outlet pressure
Fuel Calorific Value = 43,000 KJ/kg
1. Calculate the ambient conditions:
Using the given altitude (10000 m), we can refer to the gas table to obtain the ambient conditions:
At 10000 m altitude, assume:
Ambient temperature (Ta) = 223.297 K
Ambient pressure (Pa) = 0.2649 bar
2. Calculate the compressor outlet pressure (P2):
P2 = rp * Pa
P2 = 8.0 * 0.2649 bar
P2 = 2.1192 bar
3. Calculate the combustion chamber pressure (Pb):
Pb = P2 - (∆Pb * P2)
Given: ∆Pb = 4% of P2
Pb = 2.1192 bar - (0.04 * 2.1192 bar)
Pb = 2.0365 bar
4. Calculate the turbine inlet pressure (P4):
P4 = Pb
P4 = 2.0365 bar
5. Calculate the compressor outlet temperature (T2):
T2 = Ta * (1 + ((rp)^((γ-1)/γ) - 1) / ηc)
Given: γ = specific heat ratio (assumed value of 1.4 for air)
T2 = 223.297 K * (1 + ((8.0)^((1.4-1)/1.4) - 1) / 0.87)
T2 ≈ 579.42 K
6. Calculate the turbine inlet temperature (Tt4_actual):
Tt4_actual = Tt4 / ηt
Given: Tt4 = 1200 K
Tt4_actual = 1200 K / 0.90
Tt4_actual ≈ 1333.33 K
7. Calculate the turbine inlet temperature (T4):
T4 = Tt4_actual - (Tt4_actual - T2) / ηm
T4 = 1333.33 K - (1333.33 K - 579.42 K) / 0.99
T4 ≈ 580.52 K
8. Calculate the exit velocity (Ve):
Ve = √(2 * γ * R * T4 * (1 - (Pb / Pa)^((γ-1)/γ)))
Given: R = specific gas constant for air (assumed value of 287 J/kg·K)
Ve = √(2 * 1.4 * 287 J/kg·K * 580.52 K * (1 - (2.0365 bar / 0.2649 bar)^((1.4-1)/1.
No comments:
Post a Comment